Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8432, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114465

RESUMO

Sparse and short-lived excited RNA conformational states are essential players in cell physiology, disease, and therapeutic development, yet determining their 3D structures remains challenging. Combining mutagenesis, NMR spectroscopy, and computational modeling, we determined the 3D structural ensemble formed by a short-lived (lifetime ~2.1 ms) lowly-populated (~0.4%) conformational state in HIV-1 TAR RNA. Through a strand register shift, the excited conformational state completely remodels the 3D structure of the ground state (RMSD from the ground state = 7.2 ± 0.9 Å), forming a surprisingly more ordered conformational ensemble rich in non-canonical mismatches. The structure impedes the formation of the motifs recognized by Tat and the super elongation complex, explaining why this alternative TAR conformation cannot activate HIV-1 transcription. The ability to determine the 3D structures of fleeting RNA states using the presented methodology holds great promise for our understanding of RNA biology, disease mechanisms, and the development of RNA-targeting therapeutics.


Assuntos
RNA Viral , RNA Viral/genética , RNA Viral/química , Conformação de Ácido Nucleico , Espectroscopia de Ressonância Magnética , Mutagênese
2.
bioRxiv ; 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36824771

RESUMO

The cytoplasm is compartmentalized into different translation environments. mRNAs use their 3'UTRs to localize to distinct cytoplasmic compartments, including TIS granules (TGs). Many transcription factors, including MYC, are translated in TGs. It was shown that translation of proteins in TGs enables the formation of protein complexes that cannot be established when these proteins are translated in the cytosol, but the mechanism is poorly understood. Here we show that MYC protein complexes that involve binding to the intrinsically disordered region (IDR) of MYC are only formed when MYC is translated in TGs. TG-dependent protein complexes require TG-enriched mRNAs for assembly. These mRNAs bind to a new and widespread RNA-binding domain in neutral or negatively charged IDRs in several transcription factors, including MYC. RNA-IDR interaction changes the conformational ensemble of the IDR, enabling the formation of MYC protein complexes that act in the nucleus and control functions that cannot be accomplished by cytosolically-translated MYC. We propose that certain mRNAs have IDR chaperone activity as they control IDR conformations. In addition to post-translational modifications, we found a novel mode of protein activity regulation. Since RNA-IDR interactions are prevalent, we suggest that mRNA-dependent control of protein functional states is widespread.

3.
Nat Commun ; 13(1): 3792, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778416

RESUMO

Partner recognition in protein binding is critical for all biological functions, and yet, delineating its mechanism is challenging, especially when recognition happens within microseconds. We present a theoretical and experimental framework based on straight-forward nuclear magnetic resonance relaxation dispersion measurements to investigate protein binding mechanisms on sub-millisecond timescales, which are beyond the reach of standard rapid-mixing experiments. This framework predicts that conformational selection prevails on ubiquitin's paradigmatic interaction with an SH3 (Src-homology 3) domain. By contrast, the SH3 domain recognizes ubiquitin in a two-state binding process. Subsequent molecular dynamics simulations and Markov state modeling reveal that the ubiquitin conformation selected for binding exhibits a characteristically extended C-terminus. Our framework is robust and expandable for implementation in other binding scenarios with the potential to show that conformational selection might be the design principle of the hubs in protein interaction networks.


Assuntos
Proteínas de Transporte , Domínios de Homologia de src , Proteínas de Transporte/metabolismo , Ligação Proteica , Conformação Proteica , Ubiquitina/metabolismo
4.
J Biomol NMR ; 73(1-2): 81-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30762170

RESUMO

We describe a new labeling method that allows for full protonation at the backbone Hα position, maintaining protein side chains with a high level of deuteration. We refer to the method as alpha proton exchange by transamination (α-PET) since it relies on transaminase activity demonstrated here using Escherichia coli expression. We show that α-PET labeling is particularly useful in improving structural characterization of solid proteins by introduction of an additional proton reporter, while eliminating many strong dipolar couplings. The approach benefits from the high sensitivity associated with 1.3 mm samples, more abundant information including Hα resonances, and the narrow proton linewidths encountered for highly deuterated proteins. The labeling strategy solves amide proton exchange problems commonly encountered for membrane proteins when using perdeuteration and backexchange protocols, allowing access to alpha and all amide protons including those in exchange-protected regions. The incorporation of Hα protons provides new insights, as the close Hα-Hα and Hα-HN contacts present in ß-sheets become accessible, improving the chance to determine the protein structure as compared with HN-HN contacts alone. Protonation of the Hα position higher than 90% is achieved for Ile, Leu, Phe, Tyr, Met, Val, Ala, Gln, Asn, Thr, Ser, Glu, Asp even though LAAO is only active at this degree for Ile, Leu, Phe, Tyr, Trp, Met. Additionally, the glycine methylene carbon is labeled preferentially with a single deuteron, allowing stereospecific assignment of glycine alpha protons. In solution, we show that the high deuteration level dramatically reduces R2 relaxation rates, which is beneficial for the study of large proteins and protein dynamics. We demonstrate the method using two model systems, as well as a 32 kDa membrane protein, hVDAC1, showing the applicability of the method to study membrane proteins.


Assuntos
Deutério , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Prótons , Marcação por Isótopo , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Canal de Ânion 1 Dependente de Voltagem
5.
J Biomol NMR ; 70(1): 1-9, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188417

RESUMO

Molecular dynamics play a significant role in how molecules perform their function. A critical method that provides information on dynamics, at the atomic level, is NMR-based relaxation dispersion (RD) experiments. RD experiments have been utilized for understanding multiple biological processes occurring at micro-to-millisecond time, such as enzyme catalysis, molecular recognition, ligand binding and protein folding. Here, we applied the recently developed high-power RD concept to the Carr-Purcell-Meiboom-Gill sequence (extreme CPMG; E-CPMG) for the simultaneous detection of fast and slow dynamics. Using a fast folding protein, gpW, we have shown that previously inaccessible kinetics can be accessed with the improved precision and efficiency of the measurement by using this experiment.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Cinética , Conformação Proteica , Dobramento de Proteína , Proteínas Estruturais Virais/química
6.
Angew Chem Int Ed Engl ; 55(33): 9567-70, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27345359

RESUMO

Protein dynamics occurring on a wide range of timescales play a crucial role in governing protein function. Particularly, motions between the globular rotational correlation time (τc ) and 40 µs (supra-τc window), strongly influence molecular recognition. This supra-τc window was previously hidden, owing to a lack of experimental methods. Recently, we have developed a high-power relaxation dispersion (RD) experiment for measuring kinetics as fast as 4 µs. For the first time, this method, performed under super-cooled conditions, enabled us to detect a global motion in the first ß-turn of the third IgG-binding domain of protein G (GB3), which was extrapolated to 371±115 ns at 310 K. Furthermore, the same residues show the plasticity in the model-free residual dipolar coupling (RDC) order parameters and in an ensemble encoding the supra-τc dynamics. This ß-turn is involved in antibody binding, exhibiting the potential link of the observed supra-τc motion with molecular recognition.


Assuntos
Imunoglobulina G/química , Cinética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
7.
J Magn Reson ; 269: 65-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27240144

RESUMO

Exchange-mediated saturation transfer (EST) provides critical information regarding dynamics of molecules. In typical applications EST is studied by either scanning a wide range of (15)N chemical shift offsets where the applied (15)N irradiation field strength is on the order of hundreds of Hertz or, scanning a narrow range of (15)N chemical shift offsets where the applied (15)N irradiation field-strength is on the order of tens of Hertz during the EST period. The (1)H decoupling during the EST delay is critical as incomplete decoupling causes broadening of the EST profile, which could possibly result in inaccuracies of the extracted kinetic parameters and transverse relaxation rates. Currently two different (1)H decoupling schemes have been employed, intermittently applied 180° pulses and composite-pulse-decoupling (CPD), for situations where a wide range, or narrow range of (15)N chemical shift offsets are scanned, respectively. We show that high-power CPD provides artifact free EST experiments, which can be universally implemented regardless of the offset range or irradiation field-strengths.

8.
Proc Natl Acad Sci U S A ; 113(12): 3269-74, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26961002

RESUMO

Many biological processes depend on allosteric communication between different parts of a protein, but the role of internal protein motion in propagating signals through the structure remains largely unknown. Through an experimental and computational analysis of the ground state dynamics in ubiquitin, we identify a collective global motion that is specifically linked to a conformational switch distant from the binding interface. This allosteric coupling is also present in crystal structures and is found to facilitate multispecificity, particularly binding to the ubiquitin-specific protease (USP) family of deubiquitinases. The collective motion that enables this allosteric communication does not affect binding through localized changes but, instead, depends on expansion and contraction of the entire protein domain. The characterization of these collective motions represents a promising avenue for finding and manipulating allosteric networks.


Assuntos
Proteínas/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas/química
9.
Angew Chem Int Ed Engl ; 54(1): 207-10, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25377083

RESUMO

Motions play a vital role in the functions of many proteins. Discrete conformational transitions to excited states, happening on timescales of hundreds of microseconds, have been extensively characterized. On the other hand, the dynamics of the ground state are widely unexplored. Newly developed high-power relaxation dispersion experiments allow the detection of motions up to a one-digit microsecond timescale. These experiments showed that side chains in the hydrophobic core as well as at protein-protein interaction surfaces of both ubiquitin and the third immunoglobulin binding domain of protein G move on the microsecond timescale. Both proteins exhibit plasticity to this microsecond motion through redistribution of the populations of their side-chain rotamers, which interconvert on the picosecond to nanosecond timescale, making it likely that this "population shuffling" process is a general mechanism.


Assuntos
Proteínas de Bactérias/química , Streptococcus/química , Ubiquitina/química , Sequência de Aminoácidos , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Movimento (Física) , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica
10.
Angew Chem Int Ed Engl ; 53(39): 10367-71, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25115701

RESUMO

In a conformational selection scenario, manipulating the populations of binding-competent states should be expected to affect protein binding. We demonstrate how in silico designed point mutations within the core of ubiquitin, remote from the binding interface, change the binding specificity by shifting the conformational equilibrium of the ground-state ensemble between open and closed substates that have a similar population in the wild-type protein. Binding affinities determined by NMR titration experiments agree with the predictions, thereby showing that, indeed, a shift in the conformational equilibrium enables us to alter ubiquitin's binding specificity and hence its function. Thus, we present a novel route towards designing specific binding by a conformational shift through exploiting the fact that conformational selection depends on the concentration of binding-competent substates.


Assuntos
Ubiquitina/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Mutação Puntual , Ligação Proteica , Termodinâmica , Ubiquitina/genética , Ubiquitina/metabolismo
11.
J Biol Chem ; 289(24): 16884-903, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24782311

RESUMO

The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys(3)-Cys(14)) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.


Assuntos
Amiloide/química , Dissulfetos/química , Exocitose , Somatostatina/química , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Hipotálamo/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Polimerização , Conformação Proteica , Ratos , Vesículas Secretórias/metabolismo , Somatostatina/metabolismo
12.
J Magn Reson ; 220: 8-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22683576

RESUMO

We here compare the T(2)(') values of various heteronuclear dipolar decoupling schemes commonly used in solid-state nuclear magnetic resonance experiments. Swept-frequency two-pulse phase modulation scheme is shown to give longer T(2)(') values for the majority of the magic-angle-spinning frequencies and radiofrequency amplitudes considered here. The longer T(2)(') values obtained are shown to yield spectra with higher resolution in experiments, such as INADEQUATE, which incorporate spin-echo blocks. Such blocks normally constitute the indirect dimension of a multidimensional experiment during which heteronuclear dipolar decoupling is applied, thereby making the relevance of T(2)(') manifest clearly. Experimental results are shown on samples of glycine, alanine, and Aß(42).


Assuntos
Algoritmos , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular/métodos
13.
PLoS One ; 7(1): e30109, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253896

RESUMO

Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its 'coiled coil' GTPase Effector Domain (GED), which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO) and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly.


Assuntos
Dinaminas/química , Dinaminas/metabolismo , Modelos Moleculares , Dimetil Sulfóxido , Espectroscopia de Ressonância Magnética , Movimento (Física) , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...